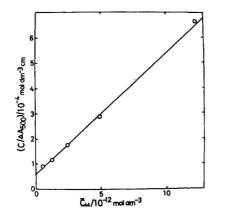
CHEMISTRY LETTERS, pp. 1301-1304, 1977. Published by the Chemical Society of Japan

PROTON-TRANSFER REACTION OF 2,4-DIHYDROXYAZOBENZENE IN AQUEOUS SOLUTION

Noboru YOSHIDA and Masatoshi FUJIMOTO Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060


The recombination reaction of 2,4-dihydroxyazobenzene (DAB; H*HA) with the hydroxide ion is investigated by temperature-jump method in 2%(v/v) ethanol-water solution. The presence of the minimum observed in the τ^{-1} vs. \bar{C}_{OH} plot is interpreted by assuming a pre-equilibrium involving an intermediate H*A⁻ with an undissociated para-OH, which has not been pointed out so far.

The rates of recombination with OH^{-} ion of the Brønsted acids such as orthohydroxy-azo compounds having an intramolecular hydrogen-bond are by many orders of magnitude lower than those of the normal Brønsted acids.¹⁾ Recently the protontransfer reactions of these compounds were studied in non-aqueous solutions²⁾ and in aqueous solutions under pressure.³⁾ In the present paper we report an unusual aspect of the kinetics of the proton-transfer reaction with the hydroxide ion of DAB having an intramolecular hydrogen-bond in 2%(v/v) ethanol-water solution.

DAB is a diprotic acid with absorption maxima at $\lambda_{max}^{H^*HA} = 378 \text{ nm}$, $\lambda_{max}^{HA} = 430 \text{ nm}$, and $\lambda_{max}^{A^2} = 474 \text{ nm}$ for each species, where H* and H denote the proton of the para- and the ortho-hydroxyl group, respectively. H*HA and A^{2^-} have also a shoulder around 415 and 410 nm, respectively. The second acid-dissociation constant K_a^C is expressed in terms of the absorbance at 500 nm and the equilibrium concentration of proton, \bar{C}_H , as follows, 4)

$$C/\Delta A_{500} = 1/\Delta \varepsilon + \bar{C}_{\mu}/\Delta \varepsilon K_{a}^{C} \qquad (1)$$

with $\Delta A_{500} = A_{500} - A'_{500}$, $\Delta \varepsilon = \varepsilon_A - \varepsilon_{HA}$, and $A'_{500} = \varepsilon_{HA}^{C}$, where ε is the molar absorption coefficient, $A_{500}^{}$ the absorbance at 500 nm and C is the total concentration of DAB. Figure 1 shows the relation between $C/\Delta A_{500}^{}$ and $\overline{C}_{H}^{}$. From the slope and the intercept of the straight line, the value of the K_a^{C} is obtained. The value of pK_a^{C} is evaluated to be 11.89. The kinetic study revealed that as for the second acid-dissociation of DAB, the contribution of the species H*A having a para-hydroxyl proton but no ortho-hydroxyl proton can not be neglected (See Scheme I). This was already mentioned by A. Corsini⁵ with respect to the complex formation of some heterocyclic ortho-hydroxy-azo compounds, PAR, PAN, and TAR, but he did not consider the equilibrium I \rightleftharpoons II. The resonance Raman spectral studies of Tropaeolin-O by T. Uno et al.⁶ suggest the contribution of the quinoidal species of HA and H*A⁻⁷. According to the Scheme I, the observed overall acid-

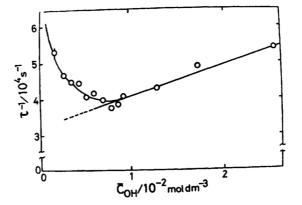
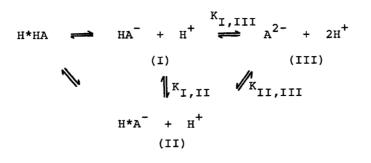
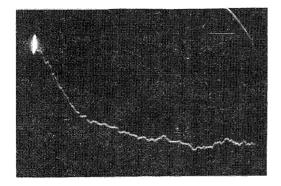



Fig. 1. Plot of $C/\Delta A_{500}$ vs. \bar{C}_{H} in 2%(v/v) ethanol-water solution. At 25 °C and I = 0.1 mol dm⁻³(KNO₃).

Fig. 3. Dependence of the reciprocal relaxation time on \bar{C}_{OH} .


Scheme I

dissociation constant of HA^- , K_a^c , is expressed as follows:

$$\kappa_{a}^{C} = (\kappa_{I,III} \times \kappa_{II,III}) / (\kappa_{I,III} + \kappa_{II,III})$$
(2)

Since the acid-dissociation of para-OH group in the species H^*A^- occurs predominantly, the value of $K_{II,III}$ must be larger than that of $K_{I,III}$. Therefore the observed K_a^C is approximately equal to $K_{I,III}$.

The kinetic measurements for the reaction of OH⁻ ion with DAB were carried out with a Union-Giken co-axial-cable temperature-jump apparatus Model RA-105. Figures 2(a) and 2(b) show the decrease in A_{490} and the corresponding increase in A_{430} , respectively. The log Δ C-time plot at 490 nm yields a straight line but that at 430 nm deviates from the linear relationship. Figure 3 shows the plot of the reciprocal relaxation time τ^{-1} vs. the equilibrium concentration of the hydroxide ion \bar{C}_{OH} . The value of τ^{-1} decreases initially with the increase of \bar{C}_{OH} , passes through a minimum at pC_H \approx 11.6 and again shows a linear increases.⁸⁾ In region pC_H > 11.6, the relationship $\tau^{-1} = k_f \bar{C}_{OH-1} + k_r$ is held, evaluating the values of k_f and k_r to be 8.8 x 10⁵ mol⁻¹ dm⁻¹ s⁻¹ and 3.2 x 10⁴ s⁻¹, respectively. The concentration-dependence of the reciprocal relaxation time are interpreted by the following Scheme II.

µs/div. Ordinate: 10 mV/div.

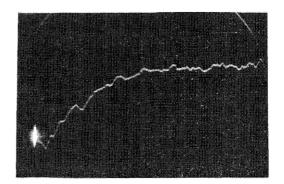


Fig. 2 (a). A temperature-jump signal at 490 nm. $\vec{c}_{OH} = 3.41 \times 10^{-3} \text{ mol dm}^{-3}$, $C = 2.92 \times 10^{-5} \text{ mol dm}^{-3}$, at 25 °C, and $I = 0.1 \text{ mol dm}^{-3}(\text{KNO}_3)$. Abscissa: 10 $I = 0.1 \text{ mol dm}^{-3}(\text{KNO}_3)$. Abscissa: 10 $I = 0.1 \text{ mol dm}^{-3}(\text{KNO}_3)$. Abscissa: 10 $I = 0.1 \text{ mol dm}^{-3}(\text{KNO}_3)$. Abscissa: 10 $I = 0.1 \text{ mol dm}^{-3}(\text{KNO}_3)$. Abscissa: 10 $I = 0.1 \text{ mol dm}^{-3}(\text{KNO}_3)$. Abscissa: 10 µs/div. Ordinate: 20 mV/div.

For the small perturbation ΔC_{i} near the equilibrium, the rate equation can be approximated as

$$\Delta C_{A}/dt = -a_{11}\Delta C_{A} - a_{12}\Delta C_{HA} \qquad (3)$$

and

$$d\Delta C_{A}/dt = -a_{11}\Delta C_{A} - a_{12}\Delta C_{HA} \qquad (3)$$

$$d\Delta C_{HA}/dt = -a_{21}\Delta C_{A} - a_{22}\Delta C_{HA}, \qquad (4)$$

where $a_{11} = k_{cb} + k_{ca} + k_{ac}\tilde{C}_{HA} + k_{bc}(\tilde{C}_{H*A} + \tilde{C}_{OH})$, $a_{12} = (k_{bc} - k_{ac})\tilde{C}_{OH}$, $a_{21} = k_{ba} - k_{ca} - k_{ac}\tilde{C}_{HA}$, and $a_{22} = k_{ba} + k_{ab} + k_{ac}\tilde{C}_{OH}$. The reciprocal relaxation time of this system is derived from the determinant. Since the step b = c is assumed to be in pre-equilibrium, the reciprocal relaxation time is given by eq. 5.

$$\tau^{-1} = k_{ab} + k_{ba} / (1 + K_{bc} \bar{C}_{OH}) + k_{ca} K_{bc} \bar{C}_{OH} / (1 + K_{bc} \bar{C}_{OH}) + k_{ac} [\bar{C}_{OH} + \bar{C}_{HA} \bar{C}_{OH} K_{bc} / (K_{bc} \bar{C}_{OH} + 1)]$$
(5)

where $K_{ac} = k_{ac}/k_{ca}$, $K_{ab} = k_{ab}/k_{ba}$, and $K_{bc} = k_{bc}/k_{cb}$. Since $K_{bc}\bar{C}_{OH} >> 1$,

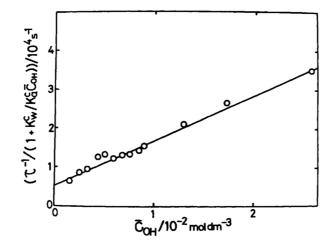


Fig. 4. Plot of Equation 6.

 $\bar{C}_{OH} >> \bar{C}_{HA}$ and $K_{ac} = K_{bc}K_{ab}$, eq. 5 is reduced to $\tau^{-1} = k_{ab} + k_{ba}/(K_{bc}\bar{C}_{OH}) + k_{ca}$ + $k_{ac}\bar{C}_{OH}$. Then the eq. 5 is transformed into $\tau^{-1}[1 + 1/(K_{ac}\bar{C}_{OH})]^{-1} = k_{ab} + k_{ac}\bar{C}_{OH}$. In the previous paper²) we indicated the relation $K_{a}^{c} = K_{b}^{c}K_{w}^{c}$, where $K_{w}^{c} = \bar{C}_{OH}\bar{C}_{H}$ and $K_{b}^{c} = \bar{C}_{A}/(\bar{C}_{H*A} + \bar{C}_{HA})\bar{C}_{OH}$. Using the similar relation in eq. 2, we obtain $K_{b}^{c} \simeq K_{ac}^{c}$. Therefore eq. 5 is reduced to eq. 6.

$$r^{-1}[1 + K_{w}^{c}/(K_{a}^{c}\bar{c}_{OH})]^{-1} = k_{ab} + k_{ac}\bar{c}_{OH}$$
(6)

From Fig. 4, k_{ab} and k_{ac} are evaluated to be 5.2 x 10³ s⁻¹ and 1.2 x 10⁶ mol⁻¹. dm³ s⁻¹, respectively. From the relationship $K_{b}^{c} \approx K_{ac}$, $k_{ca} \approx 4.2 \times 10^{4} s^{-1}$.

REFERENCES AND NOTES

- M. Eigen, Angew.Chem., <u>75</u>, 489 (1963); M. Fujimoto, "Kanwa-gensho no Kagaku (The Chemistry of the Relaxation Phenomena)," ed by S. Nagakura and K. Higashi, Iwanami, Tokyo, (1973), Chap. 6, p. 313.
- 2) N. Yoshida and M. Fujimoto, Bull. Chem. Soc. Jpn., <u>49</u>, 1557 (1976).
- 3) K. G. Liphard and A. Jost, Ber. Bunsenges. Physik. Chem., 80, 125 (1976).
- 4) Y. Oka and R. Tanaka, Nippon Kagaku Kaishi, <u>81</u>, 1846 (1960).
- 5) A. Corsini, Talanta, <u>15</u>, 993 (1968).
- 6) Y. Saito, B. Kim, K. Machida, and T. Uno, Bull. Chem. Soc. Jpn., <u>47</u>, 2111 (1976).
- 8) Recently a similar dependence is reported by Perlmutter-Hayman and Schinar, but the mechanism proposed by them differs from that of the Scheme II. See, ^B. Perlmutter-Hayman and R. Schinar, Int. J. Chem. Kinet., <u>8</u>, 741 (1976).

(Received August 24, 1977)