CHEMISTRY LETTERS, pp. 1301-13014, 1977. Published by the Chemical Society of Japan

PROTON-TRANSFER REACTION OF 2,4-DIHYDROXYAZOBENZENE IN AQUEOUS SOLUTION

Noboru YOSHIDA and Masatoshi FUJIMOTO Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

The recombination reaction of 2,4-dihydroxyazobenzene (DAB; H*HA) with the hydroxide ion is investigated by temperature-jump method in 2%(v/v) ethanol-water solution. The presence of the minimum observed in the τ^{-1} vs. \bar{c}_{OH} plot is interpreted by assuming a pre-equilibrium involving an intermediate H*A⁻ with an undissociated para-OH, which has not been pointed out so far.

The rates of recombination with OH⁻ ion of the Brønsted acids such as orthohydroxy-azo compounds having an intramolecular hydrogen-bond are by many orders of magnitude lower than those of the normal Brønsted acids.¹⁾ Recently the protontransfer reactions of these compounds were studied in non-aqueous solutions²⁾ and in aqueous solutions under pressure.³⁾ In the present paper we report an unusual aspect of the kinetics of the proton-transfer reaction with the hydroxide ion of DAB having an intramolecular hydrogen-bond in 2% (v/v) ethanol-water solution.

DAB is a diprotic acid with absorption maxima at $\lambda_{\text{max}}^{\text{max}}=378$ m nm, and $\lambda_{\max}^{\ast\ast}$ = 474 nm for each species, where H* and H denote the proton of th para- and the ortho-hydroxyl group, respectively. H*HA and A⁻⁻ have also a shou. around 415 and 410 nm, respectively. The second acid-dissociation constant K_{a}^{C} is expressed in terms of the absorbance at 500 nm and the equilibrium concentration of proton, \bar{C}_{H} , as follows, 4)

$$
C/\Delta A_{500} = 1/\Delta \varepsilon + \bar{C}_{H}/\Delta \varepsilon K_{s}^{C}
$$
 (1)

with $\Delta A_{1000} = A_{1000} - A_{1000}$, $\Delta \epsilon = \epsilon_0 - \epsilon_{\text{max}}$, and $A_{1000} = \epsilon_{\text{max}} C$, where ϵ is the mol absorption coefficient, $A_{1,0}$ the absorbance at 500 nm and C is the total concent tration of DAB. Figure 1 shows the relation between $C/\Delta A_{500}$ and \bar{C}_{H} . From the slope and the intercept of the straight line, the value of the K^C is obtained. The value of pK_a^C is evaluated to be 11.89. The kinetic study revealed that as for the second acid-dissociation of DAB, the contribution of the species $H*A^T$ having a para-hydroxyl proton but no ortho-hydroxyl proton can not be neglected (See Scheme Ⅰ). This was already mentioned by A. Corsini⁵⁾ with respect to the complex formation of some heterocyclic ortho-hydroxy-azo compounds, PAR, PAN, and TAR, but he did not consider the equilibrium $I \rightleftharpoons II$. The resonance Raman spectral studies of Tropaeolin-O by T. Uno et al. $^{6)}$ suggest the contribution of the quinoidal species of HA⁻ and H*A^{-.7)} According to the Scheme I, the observed overall acid-

Fig. 1. Plot of $C/\Delta A_{500}$ vs. \bar{C}_{H} in 2%(v/v) ethanol-water solution. At 25 °C and I = 0.1 mol $dm^{-3}(KNO_2)$.

Fig. 3. Dependence of the reciprocal relaxation time on $\bar{c}_{\alpha\mu}$.

Scheme

dissociation constant of HA⁻, K_{a}^{C} , is expressed as follows:

$$
K_{a}^{C} = (K_{I,III} \times K_{II,III}) / (K_{I,III} + K_{II,III})
$$
 (2)

Since the acid-dissociation of para-OH group in the species $H*A^{\top}$ occurs predominantly, the value of $K_{II,III}$ must be larger than that of $K_{II,III}$. Therefore the observed $K_{\overline{a}}$ is approximately equal to $K_{\overline{1},\overline{1}}$

The kinetic measurements for the reaction of OH⁻ ion with DAB were carried out with a Union-Giken co-axial-cable temperature-jump apparatus Model RA-105. Figures 2(a) and 2(b) show the decrease in A_{A_00} and the corresponding increase i: A₁₃₃, respectively. The log AC-time plot at 490 nm yields a straight line but that at 430 nm deviates from the linear relationship. Figure 3 shows the plot of the reciprocal relaxation time τ^{-1} vs. the equilibrium concentration of the hydroxide ion \bar{c}_{OH} . The value of τ^{-1} decreases initially with the increase of \bar{c}_{OH} , passes through a minimum at $\textrm{pc}_{\textrm{H}}$ = 11.6 and again shows a linear increases. \cdot I region pC_H > 11.6, the relationship τ = k_fC_{OH} + k_r is held, evaluating the values of k_f and k_f to be 8.8 x 10³ mol⁻¹ dm³ s⁻¹ and 3.2 x 10³ s⁻¹, respection The concentration-dependence of the reciprocal relaxation time are interpreted by the following Scheme II.

Fig. 2 (a). A temperature-jump signal at 490 nm. $\bar{C}_{\text{max}} = 3.41 \times 10^{-3}$ mol dm⁻³ C = 2.92 x 10 [→] mol dm ⁻, at 25 °C, an $I = 0.1$ mol dm $\check{ }$ (KNO $_{\circ}$). Abscis **μs/div.** Ordinate: 10 mV/c

Fig. 2(b). A temperature-jump signal at 430 nm. $C_{\text{max}} = 4.26 \times 10^{-3}$ mol dm $C = 2.92 \times 10^{-5}$ mol dm \sim , at 25 °C, and $I=0.1$ mol dm \degree (KNO $_{\circ}$). Abscis μs/div. Ordinate: 20 mV/div.

For the small perturbation ΔC_i near the equilibrium, the rate equation can be approximated as

$$
\Delta C_A/dt = -a_{11}\Delta C_A - a_{12}\Delta C_{HA}
$$
 (3)

and
$$
d\Delta C_{HA}/dt = -a_{11}\Delta C_A - a_{12}\Delta C_{HA}
$$
 (3)

where a_{11} = k_{cb} + k_{ca} + $k_{ac}\bar{c}_{HA}$ + k_{bc} (\bar{c}_{H^*A} + \bar{c}_{OH}), a_{12} = (k_{bc} - k_{ac}) \bar{c}_{OH} , a_{21} k_{bs} - k_{ac} - k_{ac}C_{HA}, and a₂₂ = k_{ba} + k_{ab} + k_{ac}C_{OH}. The reciprocal relaxation time of this system is derived from the determinant. Since the step b \Longrightarrow c is assu to be in pre-equilibrium, the reciprocal relaxation time is given by eq. 5.

$$
\tau^{-1} = k_{ab} + k_{ba} / (1 + K_{bc} \bar{C}_{OH}) + k_{ca} K_{bc} \bar{C}_{OH} / (1 + K_{bc} \bar{C}_{OH})
$$

+ $k_{ac} [\bar{C}_{OH} + \bar{C}_{HA} \bar{C}_{OH} K_{bc} / (K_{bc} \bar{C}_{OH} + 1)]$ (5)

where $K_{ac} = k_{ac}/k_{ca}$, $K_{ab} = k_{ab}/k_{ba}$, and $K_{bc} = k_{bc}/k_{cb}$. Since $K_{bc}\bar{C}_{OH}$ >> 1

Fig. 4. Plot of Equation 6.

C_{om} >> C_{ne} and K = K, K,, eq. 5 is reduced to τ = k, + k, /(K, C_{om}) + k + k_{aC}C_{OH}. Then the eq. 5 is transformed into τ⁻¹[1 + 1/(K_{aC}C_{OH})]⁻¹ = k_{ab} + k_{aC}C_O
In the previous paper²⁾ we indicated the relation K_C = K_LKC, where K_C = C_o.,C. and $K_t^C = \bar{C}_\lambda/(\bar{C}_{n+1} + \bar{C}_{n+1})\bar{C}_{n+1}$. Using the similar relation in eq. 2, we obtain $K_c^C = K_{n+1}$ Therefore eq. 5 is reduced to eq. 6

$$
r^{-1}[1 + K_{w}^{C}/(K_{a}^{C}\bar{C}_{OH})]^{-1} = k_{ab} + k_{ac}\bar{C}_{OH}
$$
 (6)

From Fig. 4, k_{ab} and k_{ac} are evaluated to be 5.2 x $10\degree$ s $^{-1}$ and 1.2 x $10\degree$ mol- $\sum_{n=1}^{\infty}$ s $\sum_{n=1}^{\infty}$ respectively. From the relationship $K_{n} \cong K_{n-1}$, $K_{n-2} \cong 4.2$ x 10 s

REFERENCES AND NOTES

- 1) M. Eigen, Angew.Chem., 75, 489 (1963); M. Fujimoto,"Kanwa-gensho no Kagaku (The Chemistry of the Relaxation Phenomena)," ed by S. Nagakura and K. Higashi, Iwanami, Tokyo, (1973), Chap. 6, p. 313.
- 2) N. Yoshida and M. Fujimoto, Bull. Chem. Soc. Jpn., 49, 1557 (1976).
- 3) K. G. Liphard and A. Jost, Ber. Bunsenges. Physik. Chem., 80, 125 (1976).
- 4) Y. Oka and R. Tanaka, Nippon Kagaku Kaishi, 81, 1846 (1960).
- 5) A. Corsini, Talanta, 15, 993 (1968).
- 6) Y. Saito, B. Kim, K. Machida, and T. Uno, Bull. Chem. Soc. Jpn., 42, 2111 (1976).
- 7) A clear information on the existence of the equilibrium $I \rightleftharpoons II$ involving H*A⁻ would be obtained by the studies on the pH-dependence of chemical shifts in the carbon-13 NMR spectra.
- 8) Recently a similar dependence is reported by Perlmutter-Hayman and Schinar, but the mechanism proposed by them differs from that of the Scheme II. See, B. Perlmutter-Hayman and R. Schinar, Int. J. Chem. Kinet., 8 , 741 (1976).

(Received August 24, 1977)